A construction of biharmonic maps into homogeneous spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biharmonic Maps into Sol and Nil Spaces

In this paper, we study biharmonic maps into Sol and Nil spaces, two model spaces of Thurston's 3-dimensional geometries. We characterize non-geodesic biharmonic curves in Sol space and prove that there exists no non-geodesic biharmonic helix in Sol space. We also show that a linear map from a Eu-clidean space into Sol or Nil space is biharmonic if and only if it is a harmonic map, and give a c...

متن کامل

Homotopy Classification of Maps into Homogeneous Spaces

We give an alternative to Postnikov’s homotopy classification of maps from 3-dimensional CW-complexes to homogeneous spaces G/H of Lie groups. It describes homotopy classes in terms of lifts to the group G and is suitable for extending the notion of homotopy to Sobolev maps. This is required in applications to variational problems of mathematical physics.

متن کامل

Jiang-type Theorems for Coincidences of Maps into Homogeneous Spaces

Let f, g : X → G/K be maps from a closed connected orientable manifold X to an orientable coset space M = G/K where G is a compact connected Lie group, K a closed subgroup and dimX = dimM . In this paper, we show that if L(f, g) = 0 then N(f, g) = 0; if L(f, g) 6= 0 then N(f, g) = R(f, g) where L(f, g), N(f, g), and R(f, g) denote the Lefschetz, Nielsen, and Reidemeister coincidence numbers of ...

متن کامل

Stability of F-biharmonic maps

This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.

متن کامل

Remarks on biharmonic maps into spheres

We prove an apriori estimate in Morrey spaces for both intrinsic and extrinsic biharmonic maps into spheres. As applications, we prove an energy quantization theorem for biharmonic maps from 4-manifolds into spheres and a partial regularity for stationary intrinsic biharmonic maps into spheres. x

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Analysis and Geometry

سال: 2014

ISSN: 1019-8385,1944-9992

DOI: 10.4310/cag.2014.v22.n3.a3